Logo der Universität Wien

Welfare Maximization with Friends-of-Friends Network Externalities

Abstract

Online social networks allow the collection of large amounts of data about the influence between users connected by a friendship-like relationship. When distributing items among agents forming a social network, this information allows us to exploit network externalities that each agent receives from his neighbors that get the same item. In this paper we consider Friends-of-Friends (2-hop) network externalities, i.e., externalities that not only depend on the neighbors that get the same item but also on neighbors of neighbors. For these externalities we study a setting where multiple different items are assigned to unit-demand agents. Specifically, we study the problem of welfare maximization under different types of externality functions. Let n be the number of agents and m be the number of items. Our contributions are the following: (1) We show that welfare maximization is APX-hard; we show that even for step functions with 2-hop (and also with 1-hop) externalities it is NP-hard to approximate social welfare better than (1-1/e). (2) On the positive side we present (i) an O ( n ) $O(sqrt(n))$ -approximation algorithm for general concave externality functions, (ii) an O(log m)-approximation algorithm for linear externality functions, and (iii) a 5/18 (1-1/e)-approximation algorithm for 2-hop step function externalities. We also improve the result for 1-hop step function externalities by giving a 1/2 (1-1/e)-approximation algorithm.

GrafikTop
Citation
Category
Journal Paper
Divisions
Theory and Applications of Algorithms
Subjects
Theoretische Informatik
Journal or Publication Title
Theory of Computing Systems
ISSN
1432-4350
Publisher
Springer US
Page Range
pp. 1-39
Date
2017
Official URL
http://dx.doi.org/10.1007/s00224-017-9759-8
Export
GrafikTop
Contact us
Faculty of Computer Science
University of Vienna

Währinger Straße 29
A-1090 Vienna